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Abstract

Understanding how political news consumption changes over
time can provide insights into issues such as hyperpartisan-
ship, filter bubbles, and misinformation. To investigate long-
term trends of news consumption, we curate a collection of
over 60M tweets from politically engaged users over seven
years, annotating ∼10% with mentions of news outlets and
their political leaning. We then train a neural network to fore-
cast the political lean of news articles Twitter users will en-
gage with, considering both past news engagements as well as
tweet content. Using the learned representation of this model,
we cluster users to discover salient patterns of long-term news
engagement. Our findings include the following: (1) hyper-
partisan users are more engaged with news; (2) right-leaning
users engage with contra-partisan sources more than left-
leaning users; (3) topics such as immigration, COVID-19, Is-
lamaphobia, and gun control are salient indicators of engage-
ment with low quality news sources.

1 Introduction
The transformation of the news ecosystem from print to
online media has fundamentally changed how people read
about and engage with current events. While this media
decentralization has undoubtedly increased one’s access to
diverse and timely information, it has also led to hyper-
partisanship, polarization, and misinformation, all of which
are fostered by computer-mediated communication. Recent
work has investigated socio-technical issues such as the
causes of polarization and “filter bubbles” (Bakshy, Mess-
ing, and Adamic 2015; Bail et al. 2018; DellaPosta 2020;
Liu et al. 2021; Shivaram et al. 2022), the influence of hyper-
partisan media (King, Schneer, and White 2017; Guess et al.
2021), and the factors that contribute to the spread of misin-
formation (Lobato et al. 2020; Osmundsen et al. 2021a). It
has also led to research focusing on identifying interventions
that can help foster healthier news engagement habits (Bhar-
gava et al. 2019; Lutzke et al. 2019; Masrour et al. 2020).

Among such scholarship, however, studies have typically
been either small controlled trials or observational studies
over very short time periods. Those that consider long-term
trends are primarily focusing on population-level changes
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over time. What is lacking is a long-term perspective to de-
tail the evolution of an individual’s news consumption and
sharing habits. In response, we collect over 60M tweets from
politically engaged Twitter users over a seven year period,
and we annotate ∼10% with mentions of news outlets and
the political lean of those outlets. With this data, we inves-
tigate how the types of news sources a user engages with
change over long time periods. Our primary contributions
are as follows:
• Novel Dataset: We curate a new dataset to foster re-

search into long-term news engagement behavior, con-
sisting of ∼6.5M news engagement tweets over seven
years. To preserve anonymity, the dataset consists of
records of the mentioned news source, partisan lean, day,
and anonymized user IDs.1

• Forecasting Model: We develop LSTM models to fore-
cast news engagement behavior over three-month win-
dows, predicting the number of news mentions from each
of seven political stance categories (extreme liberal to ex-
treme conservative). The best performing model has a
mean absolute error of 3.7 engagements (out of an av-
erage of ∼39 news engagements per window).

• Discovery of Long-term Patterns: The intermediate
states of the LSTM offer a compact representation of
the long-term behavior of each user. We cluster users
to discover salient patterns, finding that (1) hyperparti-
san users are more engaged with the news; (2) right-
leaning users engage with contra-partisan sources more
than left-leaning users do; (3) topics such as immigration,
COVID-19, Islamaphobia, and gun control are leading
indicators of engagement with low quality news sources.

2 Related Work
One area of relevant research considers the factors contribut-
ing to engagement with hyperpartisan news, misinforma-
tion, and conspiracy theories. In some cases, the content is
highlighted, such as its topic and tone (Wischnewski, Bruns,
and Keller 2021), as well as how such content aligns with
the political views of the user. For example, Osmundsen
et al. (2021a) show that hostility towards political oppo-
nents drives misinformation sharing, Rathje, Van Bavel, and

1Code and data are available at: https://github.com/tapilab/
icwsm-2024-news-forecasting
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van der Linden (2021) find that such out-group language
strongly predicts social media engagement, and Brady et al.
(2017) and Valenzuela, Piña, and Ramı́rez (2017) find that
moral-emotional language in political messages increases
their diffusion. Other related research focuses on the per-
sonality traits of the user; e.g., Lobato et al. (2020) show
that individuals with personality traits high in traditional-
ism and low in social dominance were more willing to share
misinformation about COVID-19, and a meta-analysis of
COVID-19 misinformation by van Mulukom et al. (2020)
finds that biases, group identity, and distrust in institutions
contribute to misinformation sharing. There are also inves-
tigations into how hyperpartisan news and misinformation
spreads online (Haber et al. 2021; Introne et al. 2020), as
well as possible interventions for minimizing users’ engage-
ment with such content (Bak-Coleman et al. 2022; Bhuiyan
et al. 2021; Masrour et al. 2020; Pennycook et al. 2021;
Aslett et al. 2022; Nyhan 2021). Yet, beyond an examina-
tion of how users navigate YouTube to access more extreme
content (Ribeiro et al. 2020), there is little research on user-
level long-term trends in news engagement.

A second line of research investigates the dynamics sur-
rounding social media-based filter bubbles, polarization, and
ideological segregation. Much has been written on these top-
ics, and we highlight a selection of the most relevant find-
ings, beginning with DellaPosta (2020), who shows that po-
larization arises not simply by hardening opinions on a hand-
ful of issues but rather by belief consolidation, in which
partisan views on one topic spread to other topics. Robert-
son et al. (2021) provide evidence that filter bubbles are
driven less by the idiosyncrasies of search engines and more
by users self-selecting into “echo chambers.” This is con-
sistent with the finding of Bakshy, Messing, and Adamic
(2015) that polarization on Facebook is mostly driven by
homophily of user friendship networks. Relatedly, Bail et al.
(2018) show that exposure to opposing views on social me-
dia can increase political polarization. Other work has per-
formed linguistic analysis to track how issues are framed
differently by news source and over time (Tsur, Calacci, and
Lazer 2015; Liu and Huang 2022; Islam, Roy, and Gold-
wasser 2023).

Much of this prior work focuses on correlations among
static user attributes and news sharing behavior, or it con-
ducts randomized controlled trials that investigate a handful
of interventions. Given the complex factors influencing news
engagement over the short- and medium-terms, we call for
new methods to analyze longitudinal, real-world data and
explore patterns of news engagement behavior over time.
We propose several neural network architectures and learn-
ing methods to more accurately predict future news sharing
behavior of users as well as to identify latent representations
characterizing a user’s transitioning news engagement.

3 Data
Our dataset is based on tweets where users engage, over a
period of several years, with news sources across different
partisan and ideological dimensions. For the present study,
we focus on “news engagement” events where a user ei-
ther mentions the official Twitter handle of a news source or

Year All
Tweets

NE
Tweets NE %

2006 3 0 0.00
2007 424 0 0.00
2008 14,649 7 0.05
2009 92,788 189 0.20
2010 187,609 2398 1.28
2011 741,038 16,065 2.17
2012 1,569,018 49,765 3.17
2013 1,853,832 74,069 4.00
2014 2,172,500 120,568 5.55
2015 2,579,583 181,957 7.05
2016 3,502,755 350,700 10.01
2017 4,816,301 585,272 12.15
2018 5,744,817 684,334 11.91
2019 7,889,222 904,271 11.46
2020 16,247,000 1,843,002 11.34
2021 16,021,606 1,654,322 10.33
Total 63,433,145 6,466,919 10.20

Table 1: Tweets collected by year (NE = news engagement).

shares a URL to an article from that source. We first identify
a set of English language-based news sources covering the
partisan landscape. We then assign political ideology ratings
to different news sources based on allsides.com, a media bias
rating site, where the ideology spectrum {-2,-1,0,+1,+2}
represents -2 for extreme liberals and +2 for extreme con-
servatives. We utilize ratings for 419 different news sources;
yet, to account for a more diverse range of media quality,
we extend the sample to include 103 low-reliability sources
collected from Osmundsen et al. (2021b),2 which were orig-
inally identified by Guess et al. (2019) and Grinberg et al.
(2019). These low-reliability sources are rated as being ei-
ther pro-Republican or pro-Democrat, and we assign the
partisan lean of these sources as -3 (pro-Democrat) and +3
(pro-Republican). The final dataset is thus comprised of 522
news sources that have valid Twitter handles and URLs.

We next use the Twitter Streaming API to identify users
who engage with each of the above mentioned 522 news
sources. We submitted queries to the API in Fall 2021 to
identify mentions of each news source, resulting in the iden-
tification of 1.67 million users. To account for the diversity
of all Twitter users (i.e., users who do not engage with any of
the identified news sources), we also collected data for 59K
random users using the Twitter API over the same period.
We limited the presence of bots by filtering out users that
appear to exhibit automated behavior based on frequency of
tweets, number of followers, and number of friends (c.f., Ap-
pendix). Based on the news sources with which they engage,
we then sampled ∼1,200 users by partisan stance, evenly
distributed across news sources per stance. We combined
this with 1,200 random users sampled from the Twitter API,
resulting in an initial set of 9,781 users.

We collected each sampled user’s entire Twitter timeline,

2We collected data for 167 news sources from Osmundsen et al.
(2021b), excluding those that were either (a) already included in
AllSides or (b) without a Twitter account or website. This reduced
this subsample to 103 sources.
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News Engagement Tweets
Stance Number Percentage

Unreliable Liberal (-3) 112,560 1.74
Extreme Liberal (-2) 1,141,939 17.66

Liberal (-1) 1,977,177 30.57
Non-partisan (0) 1,240,848 19.19
Conservative (1) 569,489 8.81

Extreme Conservative (2) 1,256,521 19.43
Unreliable Conservative (3) 168,385 2.60

Total 6,466,919 100

Table 2: News engagement tweets by partisan stance.

amounting to a total of 63.5 million tweets. The annual tweet
distribution for news engagement tweets is shown in Table
1, where “NE Tweets” refer to those instances when a user
engages with a given news source, encompassing 10.2% of
the tweets collected. The distribution of tweets by partisan
stance can be seen in Table 2, where the most commonly
engaged news sources are moderate liberal/Democrat (-1),
followed by moderate/non-partisan (0) and strongly conser-
vative/Republican (+2).

Table 1 shows that the majority of tweets in our dataset
were posted after 2014, and we thus analyze tweets made af-
ter January 1, 2015. To focus on users with a significant his-
tory of news engagement, we exclude user accounts that do
not engage with news sources at least 50 times since 2015.
We also exclude users whose news engagement is not dis-
tributed across at least a three-year period. Based on these
filtering criteria, 3,806 users were removed from our sam-
ple. We also filter out 137 potentially automated accounts
in our sample by removing users whose total news engage-
ment volume is three standard deviations greater than the
mean news engagement volume (i.e., 3-sigma rule) (Hasan,
Orgun, and Schwitter 2018). In sum, our final dataset is com-
prised of 5,838 users who generate 44.2M total tweets, of
which 4.6M are news engagements.

4 Problem Statement
We forecast a user’s future news engagement behavior based
on their prior activity. To formulate this task, for user ui in
time window tj , let yitj ∈ N1×7 be a vector representing the
number of news engagements with each of the seven par-
tisan stances {−3,−2,−1, 0, 1, 2, 3}. As described earlier,
a news engagement occurs when a user either mentions the
Twitter handle or shares a URL to an article from a news
source.

As an input to the model, let mi
tj represent attributes of

all tweets (text, mentions, hashtags, etc.) of user ui across
tj . Given the observed historic news engagement count vec-
tors {yit1 , y

i
t2 , ..., y

i
tn} from time window t1 to tn and tweet

attributes {mi
t1 ,m

i
t2 , ...,m

i
tn}, our goal is to estimate the

probability distribution over the engagement counts of a fu-
ture time step tn+1 for user ui.

P (yitn+1
|yit1 ...y

i
tn ,m

i
t1 ...m

i
tn) (1)

In other words, given historic tweet attributes and engage-
ment counts, we intend to predict the number of times a

Dataset Train Val Test
D1 2015-2017 2015-2017 2018
D2 2016-2018 2016-2018 2019
D3 2017-2019 2017-2019 2020
D4 2018-2020 2018-2020 2021

Table 3: Time ranges for each train/test split of the forecast-
ing task.
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Figure 1: Train-test splits for D1 (2015-2018), showing the
time ranges used for each instance. Analogous time ranges
are used for D2-D4.

given user engages with news sources across all stances (−3
to +3) in subsequent time steps.

5 Methods
We discuss in this section our data pre-processing tech-
niques, a number of forecasting models employed via mul-
tiple neural network architectures, and our baseline method.
We also describe the different features that we employ for
training our models.

5.1 Pre-processing
We set n = 8 (the number of input time steps), where
each time step tj spans three months. Thus, given a user’s
activity over the previous two years, we predict the next
three months of news engagements. To create multiple
train/test folds, we split our overall dataset (D) into four
folds {D1, D2, D3, D4} shown in Table 3, each of which
spans three years. Figure 1 illustrates the input and output
for the training and testing instances of D1. Thus, for each
user of D1, we generate four training instances and four test-
ing instances. This is repeated for each fold D1 through D4.

5.2 Features
1. News Engagement Counts (yitj ): For each input time

step tj and user ui, we include as input features the
lagged count vectors of the number of engagements for
each partisan stance p ∈ {−3,−2,−1, 0, 1, 2, 3}. We de-
note this yitj , where yitj ∈ R1×7. We also standardize
these count values using z-score standardization, where
the means and standard deviations are calculated over the
input time steps (i.e., t1 to tn).

2. Tweet Text (vitj ): We also include features over the tweet
text. For each three month time step, we select the 25
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most recent tweets for both the news engagement tweets
and the non-news engagement tweets. We then pass these
two sets of tweets through TwHIN-Bert (Zhang et al.
2022), a transformer based language model fine-tuned on
Twitter data, and extract embedding representations for
each token of each tweet. We perform two levels of ag-
gregation over these token representations: (1) for each
tweet, we concatenate the CLS token and average em-
bedding of the other non-CLS tokens of the tweet; (2)
we take an average over these 25 tweet representations.
This results in two 1,536-dimension vector representa-
tions, one for the engagement tweets (engtj ) and one for
the non-engagement tweets (nengtj ). We then concate-
nate these two embedding vectors to get a single text rep-
resentation vitj , where vitj ∈ R1×3072.

3. Hashtags (#i
tn ): For the last input time step tn, we se-

lect the top 100 most frequently used hashtags for that
specific three-month window. We then pass these hash-
tags through the language model (TwHIN-Bert) and per-
form the same aggregation step that we used for our
text-based features, obtaining a final vector representa-
tion #i

tn where #i
tn ∈ R1×1536.

4. Input Quarter Encoding (qitj ): To capture seasonal ef-
fects, for each observation sequence we encode the year-
quarter of each input time step (Q1 - Q4) as a one-hot
encoded vector qitj , where qitj ∈ R1×4.

5. Forecast Quarter Encoding: Similarly, for each obser-
vation sequence, we encode the year-quarter of the time-
step we are forecasting as a one-hot encoding vector.

5.3 Baseline
For comparison, we include a simple approach that sets the
prediction to be equal to the values for the final input time
step (i.e., ŷitn+1

= yitn ).

5.4 Single Feature Network (SFN)
We use a bi-directional LSTM (Bi-LSTM) (Schuster and
Paliwal 1997) as our primary forecasting model. We select
this model in part due to its application in other types of user
activity forecasting – e.g., Yang et al. (2018) fit an LSTM to
predict churn rate for a social media application, and Liu
et al. (2019) used GNNs to forecast future user engagement
on Snapchat. Similar models have performed best on time
series benchmark competitions (Oreshkin et al. 2019).3

The Single Feature Network (SFN) uses only one type
of feature — either text based representation sequences
{vit1 , v

i
t2 , ..., v

i
tn} (SFN+T) or news engagement count

based sequences {yit1 , y
i
t2 , ..., y

i
tn} (SFN+C). When using

the text based representations we add a linear layer before
passing the input sequences into the Bi-LSTM. After passing
the input sequences through our Bi-LSTM model, we extract
the final hidden states for both the forward and backward
layers (

−→
htn ,
←−
htn ) and concatenate them to obtain a single

3While transformer-based models are a viable alternative, re-
cent work has questioned the effectiveness of such models for time
series forecasting (Zeng et al. 2023).

hidden state representation htn . This is then passed through
a final output layer <Wout, bout> to predict the future news
engagement count vector ŷitn+1

for time step tn+1, as shown
in Equation 2.

ŷitn+1
= (Wouthtn + bout) (2)

5.5 Multiple Feature Network (MFN)
The Multiple Feature Network (MFN) combines multiple
features (tweet texts, news engagement counts, and in-
put quarter encodings) to forecast future news engagement
counts. This model’s architecture resembles the single fea-
ture network (SFN) with a few modifications. Once we ex-
tract the final hidden state representation htn from our Bi-
LSTM layers (discussed above), we concatenate the hash-
tag representation #i

tn of the final input time step and the
output quarter encoding qitn+1

to this hidden state repre-
sentation htn . This is then passed through an intermediate
layer <Winter, binter> , the output of which, giinter, is then
passed through our final output layer <Wout, bout> to pre-
dict the future news engagement count vector ŷitn+1

for time
step tn+1, as shown in equation 4.

giinter = (Winter[htn ,#
i
tn , qtn+1

] + binter) (3)

ŷitn+1
= (Woutg

i
inter + bout) (4)

All network models are trained to minimize Mean Ab-
solute Error (MAE) loss.4 As we predict a vector of engage-
ment counts, the overall MAE loss is a sum across individual
MAE losses for each news engagement stance:

Total MAE Loss =
|p|∑
r=1

MAE(ytn+1 [r], ŷtn+1 [r]) (5)

6 Experimental Settings
To perform our forecasting experiments, we first construct
our train, test, and validation sets for each fold D1 through
D4 (Table 3). For validation, we hold out 20% of the users
in the training set. Once we have our train, validation, and
test sets, we filter out sequences where a user has no news
engagement activity over the entire input sequence. The re-
sulting dataset sizes are shown in Table 4.

All experiments use a system with 4 Nvidia A5000 GPUs,
512 GB RAM and an AMD Ryzen Threadripper 3975WX
CPU. We report means and standard deviations of scores
across five random seeds. Table 9 in the Appendix lists all
hyperparameters that were tuned on the validation data.

7 Results and Analysis
We now turn to the results of our experiments and conduct an
extended analysis of long-term news engagement behavior
of users on Twitter.

4Other loss functions such as Mean Squared Error (MSE),
Mean Absolute Percentage Error (MAPE), and Huber Loss were
also considered, but exploratory experiments suggested MAE was
less sensitive to outliers.
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Dataset Train Val Test
D1 15,708 3,904 21,881
D2 17,536 4,345 22,327
D3 17,862 4,465 22,648
D4 18,106 4,542 17,378

Table 4: Train, validation, and test set sizes. Each instance is
a single user’s timeline, with two years of input observations
used to forecast the next three months of news engagements.

Model MAE MSE
Baseline 3.89 216.33
SFN+C 3.73 207.89
SFN+T 4.22 258.08
MFN 3.85 220.55

Table 5: Mean absolute error and mean-squared error aver-
aged over all test folds, showing SFN+C as the most accurate
model.

7.1 Model Accuracy
Table 5 shows the average error rates of the models across
all test datasets, D1 through D4, averaged across stance and
dataset. We find that SFN+C and MFN perform first- and
second-best, respectively, both outperforming the baseline
model. Even though the SFN+T model performs the worst,
we are surprised to discover that it performs relatively well
for a model using text features without news engagement
counts. To assess these differences in performance, we con-
duct paired t-tests over the combined results and find that,
with the exception of the Baseline-MFN comparison, all
pairwise comparisons yield significantly different average
error rates (p < 0.01).

Table 6 breaks down error rates by fold and partisan
stance. We can see that SFN+C has the lowest error for most
cases. Exceptions include -3/+3, where the LSTM models
generally do not outperform the baseline. We attribute this in
part to class imbalance — the overall infrequency of -3/+3
stances (c.f., Table 2) lead to under prediction of engage-
ment.

Figure 2 plots test error by quarter. We observe that er-
ror magnitude generally increases over time due largely
to the overall increase in engagement volume. The high-
est increase in errors is measured for 2020, possibly result-
ing from a number of events that increased news engage-
ment, namely, COVID-19 and Trump’s impeachment. Over
time, the SFN+C model performs best, with considerable
improvements over other models from 2020-Q4 to 2021-Q2.

7.2 User-level Error Analysis
To gauge model performance for individual users, we plot
the true and predicted counts for a sample of users in Fig-
ure 3. These users were selected because they exhibited the
highest error rates according to the SFN+C model. Each sub-
plot in Figure 3 represents a different user-stance combina-
tion. For most stances, we observe that our models perform
well when accounting for the overall trend of engagement
counts. The main challenge for these models are sudden

Figure 2: Mean absolute error by quarter. The rising error is
in part due to increased user activity since 2020.

spikes in engagement. Yet, the SFN+C model seems to han-
dle engagement spikes better than the SFN+T model, likely
due to the fact that text based features do not capture the
intensities of the news engagement for these users. We also
observe that neither the SFN+C nor SFN+T models perform
very well for the -3 category, which could result from the
low volume of these types of engagements in our sample.

7.3 Predicting Sudden Shifts in News
Engagement

Sudden shifts in engagement may be difficult to predict,
but they are of practical interest given that they represent
a user’s news engagement transition point. To examine this
phenomenon more closely, we compare model performance
across a range of transition points. To identify transitions
where there is a shift in engagement between the input time
steps (i.e., t1 to tn) and the forecast window (tn+1), we rank
samples by measuring the cosine distance between the en-
gagement count vector of the last time-step of the input se-
quence (yitn ) and the count vector to be predicted (ŷitn+1

).
We next compute error metrics at all ranks of these transition
points, ordered from most to least transition. Figure 4 plots
the results for test set D1 across the baseline and the SFN+C
model, showing that our SFN+C model performs better than
the baseline at all rankings. Further, the biggest improve-
ments over the baseline occur at instances of greatest tran-
sition, a finding that we also discover for other test sets and
models. Compared to the baseline, the proposed models are
more helpful when forecasting users’ sudden engagement
shifts.

A subset of transition points are sequences where a user
shifts from some news engagement to no news engagement
at all or vice versa. These shifts likely suggest that the user
is becoming engaged or disengaged with news, which we
expect to occur during notable events (e.g., elections and
political controversies). In these instances, some users be-
come swept up in the issues, while others avoid the flood
of information. We measure the performance of these meth-
ods by first selecting all samples where there is some news
engagement activity in a particular input step but no news
engagement in the output step, or where there is no news en-
gagement in the input step but news engagement in the out-
put step. The results in Table 7 show improvements over the
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Dataset Model -3 -2 -1 0 1 2 3

D1

Baseline .20 3.14 5.09 3.21 1.32 3.08 .49
SFN+C .21±.005 3.00±.004 4.80±.012 2.98±.008 1.29±.007 2.93±.003 .54±.012
SFN+T .27±.004 3.29±.031 5.40±.045 3.36±.043 1.40±.014 3.30±.053 .57±.021
MFN .27±.001 3.08±.029 4.97±.116 3.09±.076 1.34±.025 3.05±.046 .57±.028

D2

Baseline .36 3.70 6.24 3.80 2.01 3.10 .45
SFN+C .39±.042 3.46±.112 5.88±.335 3.55±.132 1.90±.155 2.99±.082 .43±.008
SFN+T .40±.001 3.91±.015 6.78±.025 3.98±.007 2.18±.011 3.50±.049 .52±.016
MFN .41±.0 3.55±.018 6.10±.024 3.64±.010 1.99±.007 3.07±.034 .44±.005

D3

Baseline .62 6.39 10.84 6.98 3.57 6.51 .68
SFN+C .64±.007 6.01±.029 10.46±074 6.74±.053 3.49±.014 6.51±.065 .70±.002
SFN+T .69±.001 6.55±.019 11.40±.035 7.27±.023 3.82±.010 7.34±.114 .77±.003
MFN .69±.001 6.06±.020 10.53±.111 6.73±032 3.49±021 6.58±.058 .73±.004

D4

Baseline 1.39 6.07 9.97 7.63 4.92 8.40 1.23
SFN+C 1.44±.017 5.73±.099 9.77±.317 7.32±.043 4.75±.040 8.31±.137 1.35±.026
SFN+T 1.50±.005 6.67±.073 11.69±.473 8.33±.147 5.04±.037 9.02±.157 1.40±.003
MFN 1.52±.002 6.04±.097 10.51±.185 7.89±.259 4.73±.041 8.57±.152 1.41±.011

Table 6: Mean absolute error by partisan stance (smallest errors in bold).

Figure 3: True vs. predictied values for users with the highest errors, according to the SFN+C model.

baseline for nearly all datasets. Notably, the SFN+T model
outperforms both the SFN+C model and the baseline for D3

and D4 when predicting a no engagement-to-engagement
shift. We surmise that text features provide a key signal for
users’ increasing engagement with news topics.

7.4 Text Analysis
To examine text features in more detail, we identify terms
that are leading indicators of engagement with unreliable
news sources (-3 or +3). Identifying salient terms from
LSTMs is challenging, and we perform a number of steps
to identify and analyze terms that are associated with un-
realiable news. First, we rank all instances by the model’s
forecasted engagement counts for news sources with -3 and
+3 news content. We then select the top 300 and bottom 300
instances, i.e., those times when users are forecast to most-
engage and least-engage with unreliable content. To identify
the terms that distinguish these two sets of users, for each
user, we concatenate the terms from all of the tweets in the

input window and perform a chi-square analysis to select
the most distinguishing terms for each user group. The most
representative terms used in the context of unreliable liberal
(-3) and unreliable conservative (+3) news sources are pre-
sented in Tables 8a and 8b, respectively.

We observe that there are differences in terms of focus and
referencing method. For example, content that precedes en-
gagement with unreliable liberal sources highlights COVID-
19, specific politicians, specific policies (e.g., health policy,
tax policy, gun policy), Trump’s impeachment, the distinc-
tion between truth and lies, the private sector, racism, Russia
and Putin, and Muslims. For conservative sources, the con-
tent focuses extensively on specific groups with a potential
role to play within American political institutions, including
globalists, Marxists, Antifa, and communists. Beyond those
groups, there is also reference to groups that could be based
within or outside the United States, including illegal immi-
grants, Hezbollah, Islamists, traffickers (drug and migrant),
the drug cartel, and individuals affiliated with Hezbollah,
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Figure 4: Error by transition points based on cosine distance
ranking (lower ranking means more abrupt transitions).

Dataset Models E → N
MAE

N → E
MAE

D1

Baseline 0.653 0.818
SFN+C 0.558 0.819
SFN+T 0.660 0.828
MFN 0.549 0.842

D2

Baseline 0.651 0.930
SFN+C 0.503 0.921
SFN+T 0.674 0.958
MFN 0.542 0.938

D3

Baseline 1.327 2.144
SFN+C 1.016 2.121
SFN+T 1.267 2.120
MFN 1.029 2.139

D4

Baseline 1.307 2.535
SFN+C 1.268 2.496
SFN+T 1.566 2.485
MFN 1.561 2.474

Table 7: Mean absolute error for instances where users shift
from Engagement to No Engagement (E → N ) and from
No Engagement to Engagement (N → E).

Venezuela, Iranians, Libya, and jihad.

7.5 Temporal Cluster Analysis
Turning now to the identification of salient patterns of news
engagement over time, rather than simply analyzing parti-
san scores over the 2018-2021 period, we integrate tweet
content to discover more nuanced engagement patterns. We
build upon prior work that uses the latent representation
learned by a neural network as the input to a clustering al-
gorithm (Huang et al. 2014; Xu et al. 2015). To do so, we
use the MFN model to represent each user. Specifically, for
each prediction window for user i, we compute the final net-
work layer giinter (Equation 4), which is the model’s repre-
sentation of all of the content and engagement features from
the prior two years. Regarding the user’s representation over
time, we concatenate the giinter vector for each of the 16 pre-
diction windows from 2018-2021 (four per year), resulting
in a single vector for each user.

policy, senators, jail, director, test, muslim, lie, 2016, lead-
ers, attack, technologies, services, dead, administration, coro-
navirus, won, senator, centre, sector, role, democracy, biden,
donald, russia, billion, justice, impeached, obama, fake, gen-
eral, tax, limited, army, journey, yesterday, fucking, vari-
ous, truth, rights, sir, companies, bank, votes, democratic,
biggest, officials, address, protect, intelligence, hospital, ask-
ing, deaths, congratulations, startups, impeachment, political,
cristiano, nra, military, supporters, senate, voters, massive,
healthcare, january, total, guy, trump, chinese, growth, rus-
sian, cases, digital, racist, technology, court, muslims, putin,
america, sen, hell, #iot, successful, election, fox, investigation,
lying, press, graham, rep, ronaldo, texas, republican, leader,
ahead, gop, congress

(a)
globalist, lefts, marxist, illegals, islam, hamas, marxists, left-
ists, soros, msm, censoring, veritas, sharia, globalists, #antifa,
ccp, farleft, aborted, cartels, noncitizens, hezbollah, venezuela,
islamist, declassified, amnesty, traffickers, fisa, iranians, cartel,
deletes, levin, spied, rino, indoctrination, libya, marxism, ji-
had, islamic, smuggling, passports, declassify, bombshell, left-
wing, lid, russiagate, durham, spying, #walkaway, strzok, cen-
sors, dominion, leftist, erupts, biological, harvesting, unborn,
communists, communism, bribes, behar, stabbed, omars, sa-
tanic, nadler, sanctuary, rashida, flashback, pcr, alqaeda, broth-
erhood, censorship, totalitarian, #foxnews, wuhan, assange,
clapper, antitrump, accusers, informant, rinos, censored, max-
ine, bureaucrats, deception, explodes, lefties, destroys, cabal,
irans, parenthood, accuser, infanticide, kerry, dossier, faucis,
jabs, lawabiding, sharpton

(b)

Table 8: Terms that are leading indicators of engagement
with unreliable (a) liberal and (b) conservative news sources.

Salient user clusters are determined by applying k-means
clustering (K=20) to these user vectors.5

Figure 5 visualizes both the news engagement and terms
used in each cluster. Each heat map displays the number of
news engagements per partisan stance in each time window,
averaged over the users in the cluster. These counts are dis-
cretized into five bins for visualization. The content above
each cluster contains the cluster number, the percentage of
users belonging to the cluster, the average stance of news
engagements in that cluster, and the top-three terms most in-
dicative of the cluster for each year. The terms are ranked by
calculating chi-squared statistics for terms appearing in one
cluster versus any other cluster. The clusters are presented in
the order of their average stance, from most liberal to most
conservative.

As an example, we observe that cluster #1 contains 4.3%
of the users. The average partisan lean of news engage-
ments in this cluster is -.87, which is the most liberal clus-
ter identified. The heatmap indicates that users in this clus-
ter primarily engage with partisan stances -2, -1, and 0.
We can also see that users were somewhat engaged early

5We experimented with other values of K, which produced sim-
ilar results. We settled on 20 given that it offered a good tradeoff
between cluster cohesion and the number of clusters.
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Figure 5: Visualization of 20 discovered clusters of users based on the learned representation of the forecasting model. Over
time and partisan stance, each heatmap/cluster includes: percentage of all users within the cluster, the average partisan lean of
users in the cluster, and the most distinctive terms for each year.

in 2018, but then had less engagement until a spike begin-
ning in late 2020. Looking at the most distinctive terms for
each year, we note that much of 2018-2019 was focused
on sports (“mls”=Major League Soccer, #nba=National Bas-
ketball Association), with few political term (“disenfran-
chising,” “redistricting”). From 2020, however, the language
became more focused on politics: “hysterectomies” refers
to a news report of detained immigrants being pressured
into gynecological procedures; “DeJoy” was the U.S. Post-
master General, who was involved in a controversy about
changes in mail delivery that impacted mail-in voting, “Per-
due” refers to a close Senate election in Georgia. In 2021,
all three top words refer to the January 6 attack on the U.S.
Capitol.

At the other end of the political spectrum, cluster #17 also
contains users who were not at first very politically engaged.

Keywords focused initially on sports (“Falcons” (football)
and #stanleycup (hockey)); yet, in 2020, users became en-
gaged with topics such as Hunter Biden, son of future Pres-
ident Joe Biden, along with his business partner Tony Bob-
ulinski, both of whom were accused of corruption by the
Trump campaign. By 2021, these users were focused on the
government’s response to the pandemic (Fauci), the conser-
vative news network OANN, and tensions between the U.S.
and China (“ccp”=Chinese Communist Party).

By using the LSTM representation, we are also able to
distinguish between clusters that have similar partisan en-
gagement patterns but discuss different topics. For exam-
ple, clusters #18 and #19 are both strongly conservative with
some variation regarding when users first become politically
engaged. While both clusters focus on immigration (“ille-
gals”) and abortion (“infanticide”), #18 is more focused on

1458



George Soros, #19 is more focused on far-left groups (An-
tifa) and investigations into Biden (“bobulinski,” “russia-
gate”).

There are two intuitive findings from this visualization.
First, users who engage with less hyperpartisan news also
have lower engagement overall. For example, clusters #7,
#9, #10 have the lowest engagement and also tend to engage
mostly with -1 and 0 partisan stances. This is in line with
prior work suggesting that the emotional language of hyper-
partisan news encourages greater engagement online (Hasell
2021; Eady et al. 2021; Weismueller et al. 2022). Second,
engagement with contra-partisan news varies across the po-
litical spectrum. For example, comparing liberal clusters #1-
#6 with conservative clusters #14-#20, we observe that lib-
eral clusters have substantially less engagement with con-
servative stances than conservative clusters have with liberal
stances. Cluster #19, for example, engages heavily with both
-1 and +3 sources, while cluster #3 engages little with con-
servative sources. This finding has additional implications
given that Bail et al. (2018) found that exposure to oppos-
ing views on social media can increase political polarization.
This is also indicative of animosity towards cross-partisan
news and politicians, which has been implicated in misinfor-
mation sharing and filter bubbles (Osmundsen et al. 2021a;
Rathje, Van Bavel, and van der Linden 2021).

While follow-up studies are required to more rigorously
investigate these and other hypotheses, this analysis pro-
vides insights into the patterns and prevalence of long-term
news engagement behaviors.

8 Discussion and Limitations
We have offered a methodology for studying how users en-
gage with political news over long time periods. The results
suggest that the future news engagement behaviors of users
can be predicted reasonably well based on prior user behav-
ior. However, sudden shifts in behavior are still difficult to
predict, and these can often occur due to external political
events (e.g., elections, protests, etc.). Clustering and visual-
izing users based on the latent representation learned by the
forecasting model can serve as an exploratory data analysis
method to motivate future work in this area.

8.1 Limitations
There are several important limitations to this work to con-
sider. First, by design, our dataset focuses on users with high
news engagement (although we also included a random sam-
ple of Twitter users). Of course, such users are quite differ-
ent from the wider population, and so one should be cau-
tious when generalizing our results beyond the sample. Sec-
ond, we have not attempted to understand the intent behind
each news engagement. As discussed in the previous sec-
tion, many users engage with cross-partisan news sources
to ridicule rather than support them. Distinguishing among
these cases will be essential for future work on this topic,
e.g., by using techniques from Shivaram et al. (2024). Third,
it is quite possible that the text-based models exhibit varying
error rates across demographic groups, though we have not
empirically investigated this. As Table 6 shows, error rates

vary by partisan stance; hence, forecast quality could vary
by a user’s demographic characteristics just as it varies by a
user’s political preferences.

8.2 Ethics and Broader Impacts
• Negative societal impacts: While our goal is to under-

stand extant user behavior, forecasting a user’s future
news engagements can be viewed as a type of user pro-
filing. This may present societal risks if such a technol-
ogy is used to, for example, censor users by political ide-
ology or conduct targeted advertising to widen partisan
divisions. Similarly, it could be used to target users sus-
ceptible to misinformation sharing.

• Cost of misclassification: There is currently limited cost
to the errors of the proposed approach, but if such a
model were to be incorporated into a process to restrict
the spread of misinformation, then forecasting -3/+3
engagements erroneously could lead to over-aggressive
content filtering.

• Privacy and consent: We have released an anonymized
dataset where each record contains the news source,
partisan lean, day, and a unique, anonymous user ID.
To comply with terms of service, no raw tweets will
be shared. All data is derived from publicly available
sources and no interventions are performed. As such,
the study was determined to be exempt by the institu-
tion’s IRB committee. While we have done our best to
anonymize the data, it is conceivable that one could guess
some of the user names, by cross-referencing the se-
quence of news sources they engaged with over time.

• FAIR: Our data is released as a simple CSV file with full
documentation. It is thus findable (via link from the paper
on the AAAI/ICWSM website), accessible (CSV is an
open format), interoperable (CSV can be opened by any
system), re-usable (future research on news engagement
is possible with the data).
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tecedents and consequences of COVID-19 conspiracy theo-
ries: a rapid review of the evidence. PsyArXiv.
Weismueller, J.; Harrigan, P.; Coussement, K.; and Tessitore,
T. 2022. What makes people share political content on social
media? The role of emotion, authority and ideology. Com-
puters in Human Behavior, 129: 107150.
Wischnewski, M.; Bruns, A.; and Keller, T. 2021. Sharewor-
thiness and Motivated Reasoning in Hyper-Partisan News
Sharing Behavior on Twitter. Digital Journalism, 1–23.
Xu, J.; Wang, P.; Tian, G.; Xu, B.; Zhao, J.; Wang, F.; and
Hao, H. 2015. Short text clustering via convolutional neural
networks. In Proceedings of the 1st Workshop on Vector
Space Modeling for Natural Language Processing, 62–69.
Yang, C.; Shi, X.; Jie, L.; and Han, J. 2018. I know you’ll
be back: Interpretable new user clustering and churn pre-
diction on a mobile social application. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 914–922.
Zeng, A.; Chen, M.; Zhang, L.; and Xu, Q. 2023. Are trans-
formers effective for time series forecasting? In Proceedings
of the AAAI conference on artificial intelligence, volume 37,
11121–11128.

Zhang, X.; Malkov, Y.; Florez, O.; Park, S.; McWilliams, B.;
Han, J.; and El-Kishky, A. 2022. TwHIN-BERT: A Socially-
Enriched Pre-trained Language Model for Multilingual
Tweet Representations. arXiv preprint arXiv:2209.07562.

Ethics Checklist
1. For most authors...

(a) Would answering this research question advance sci-
ence without violating social contracts, such as violat-
ing privacy norms, perpetuating unfair profiling, exac-
erbating the socio-economic divide, or implying disre-
spect to societies or cultures? Yes, see Discussion and
Limitations.

(b) Do your main claims in the abstract and introduction
accurately reflect the paper’s contributions and scope?
Yes

(c) Do you clarify how the proposed methodological ap-
proach is appropriate for the claims made? Yes, see
Introduction.

(d) Do you clarify what are possible artifacts in the data
used, given population-specific distributions? Yes, see
Discussion and Limitations.

(e) Did you describe the limitations of your work? Yes,
see Discussion and Limitations.

(f) Did you discuss any potential negative societal im-
pacts of your work? Yes, see Discussion and Limita-
tions.

(g) Did you discuss any potential misuse of your work?
Yes, see Discussion and Limitations.

(h) Did you describe steps taken to prevent or mitigate po-
tential negative outcomes of the research, such as data
and model documentation, data anonymization, re-
sponsible release, access control, and the reproducibil-
ity of findings? Yes, see Discussion and Limitations.

(i) Have you read the ethics review guidelines and en-
sured that your paper conforms to them? Yes

2. Additionally, if your study involves hypotheses testing...
(a) Did you clearly state the assumptions underlying all

theoretical results? Yes, see Model Accuracy.
(b) Have you provided justifications for all theoretical re-

sults? Yes, see Model Accuracy
(c) Did you discuss competing hypotheses or theories that

might challenge or complement your theoretical re-
sults? Yes, see Discussion and Limitations

(d) Have you considered alternative mechanisms or expla-
nations that might account for the same outcomes ob-
served in your study? Yes, see Discussion and Limita-
tions

(e) Did you address potential biases or limitations in your
theoretical framework? Yes, see Discussion and Limi-
tations

(f) Have you related your theoretical results to the existing
literature in social science? Yes, see Related Work.

(g) Did you discuss the implications of your theoretical
results for policy, practice, or further research in the

1461



social science domain? Yes, see Discussion and Limi-
tations

3. Additionally, if you are including theoretical proofs...
(a) Did you state the full set of assumptions of all theoret-

ical results? NA
(b) Did you include complete proofs of all theoretical re-

sults? NA
4. Additionally, if you ran machine learning experiments...

(a) Did you include the code, data, and instructions
needed to reproduce the main experimental results (ei-
ther in the supplemental material or as a URL)? Yes.

(b) Did you specify all the training details (e.g., data splits,
hyperparameters, how they were chosen)? Yes, see
Methods and Experimental Settings

(c) Did you report error bars (e.g., with respect to the ran-
dom seed after running experiments multiple times)?
Yes, see Table 6.

(d) Did you include the total amount of compute and the
type of resources used (e.g., type of GPUs, internal
cluster, or cloud provider)? Yes, see Experimental Set-
tings.

(e) Do you justify how the proposed evaluation is suffi-
cient and appropriate to the claims made? Yes, see Re-
sults and Analysis

(f) Do you discuss what is “the cost“ of misclassification
and fault (in)tolerance? Yes, see Discussion and Limi-
tations

5. Additionally, if you are using existing assets (e.g., code,
data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the cre-
ators? Yes, see Data.

(b) Did you mention the license of the assets? NA
(c) Did you include any new assets in the supplemental

material or as a URL? Yes.
(d) Did you discuss whether and how consent was ob-

tained from people whose data you’re using/curating?
Yes, see Discussion and Limitations

(e) Did you discuss whether the data you are using/curat-
ing contains personally identifiable information or of-
fensive content? Yes, see Discussion and Limitations

(f) If you are curating or releasing new datasets, did you
discuss how you intend to make your datasets FAIR?
Yes, see Discussion and Limitations

(g) If you are curating or releasing new datasets, did you
create a Datasheet for the Dataset? Yes.

6. Additionally, if you used crowdsourcing or conducted re-
search with human subjects...

(a) Did you include the full text of instructions given to
participants and screenshots? NA

(b) Did you describe any potential participant risks, with
mentions of Institutional Review Board (IRB) ap-
provals? NA

(c) Did you include the estimated hourly wage paid to
participants and the total amount spent on participant
compensation? NA

(d) Did you discuss how data is stored, shared, and dei-
dentified? NA

Technical Appendix
Bot Heuristics
We filter out suspected bot accounts from our initial collec-
tion of users, as well as those likely to be celebrities or orga-
nizations, by using a set of heuristics from the literature for
this filtering step (Cresci et al. 2015). Specifically, we com-
pare the characteristics of each account with several cut-off
values as follows
1. Follower Size (≤ 1000)
2. Following Size (≤ 1000)
3. Daily Tweet Activity (≤ 10)
4. Total Tweets authored during the life of the account (≥

1000 and ≤ 30000)

Hyperparameters
We search over the hyperparameters shown in Table 9 to
train our models, picking the best settings based on mean
absolute error on the validation set.

Parameter Values
Hidden Units - LSTM 32, 64, 128, 256, 512
Hidden Units - Linear 128, 512
Bidirectional True, False
LSTM Layers 1, 2
Activation Sigmoid, Relu
Learning Rate 1e-3, 1e-4, 1e-5
Batch Size 32, 64, 128
Early Stopping Patience 3, 5

Table 9: Hyperparameter values tuned on validation data.
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